Path by path uniqueness of stochastic differential equations

Lukas Wresch

Bielefeld University

The 14th Workshop on Markov Processes and Related Topics, Chengdu, China

18th July 2018

Table of Content

1 Motivation \& Definitions

2 Strategy of the proof

3 Proof of the Approximation Theorem

Table of Content

1 Motivation \& Definitions

2 Strategy of the proof

3 Proof of the Approximation Theorem

4 Main result

Table of Content

1 Motivation \& Definitions

2 Strategy of the proof

3 Proof of the Approximation Theorem
4. Main result

Table of Content

1 Motivation \& Definitions

2 Strategy of the proof

3 Proof of the Approximation Theorem

4 Main result

Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ we consider the stochastic differential equation

$$
\begin{equation*}
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \tag{SDE}
\end{equation*}
$$

- W is a cylindrical Brownian motion,
$[0, T] \times H \longrightarrow H$ is a bounded Borel function,

Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ we consider the stochastic differential equation

$$
\begin{equation*}
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \tag{SDE}
\end{equation*}
$$

- W is a cylindrical Brownian motion, - $f:[0, T] \times H \longrightarrow H$ is a bounded Borel function,

Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ we consider the stochastic differential equation

$$
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \quad \text { (SDE) }
$$

- W is a cylindrical Brownian motion,
- $f:[0, T] \times H \longrightarrow H$ is a bounded Borel function,

Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ we consider the stochastic differential equation

$$
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \quad \text { (SDE) }
$$

- W is a cylindrical Brownian motion,
- $f:[0, T] \times H \longrightarrow H$ is a bounded Borel function,
- $A: D(A) \longrightarrow H$ is positive definite, self-adjoint, linear, A^{-1} is trace class.

Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ we consider the stochastic differential equation

$$
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \quad \text { (SDE) }
$$

- W is a cylindrical Brownian motion,
- $f:[0, T] \times H \longrightarrow H$ is a bounded Borel function,
- $A: D(A) \longrightarrow H$ is positive definite, self-adjoint, linear, A^{-1} is trace class.

$$
\begin{gathered}
A e_{n}=\lambda_{n} e_{n}, \quad \text { with } \lambda_{n}>0 \text { and } \\
\sum_{n \in \mathbb{N}} \lambda_{n}^{-1}<\infty .
\end{gathered}
$$

Stochastic Differential Equations

Solution

We say a stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ is a solution to

$$
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0
$$

Stochastic Differential Equations

Solution

We say a stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ is a solution to

$$
\begin{equation*}
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \tag{SDE}
\end{equation*}
$$

if \mathbb{P}-a.s. for all $t \in[0, T]$ we have

$$
\begin{equation*}
X_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, X_{s}\right) \mathrm{d} s+\underbrace{\int_{0}^{t} e^{-(t-s) A} \mathrm{~d} W_{s}} \tag{IE}
\end{equation*}
$$

I.e. a mild solution.

Stochastic Differential Equations

Solution

We say a stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ is a solution to

$$
\begin{equation*}
\mathrm{d} X_{t}=-A X_{t} \mathrm{~d} t+f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, \quad X_{0}=0 \tag{SDE}
\end{equation*}
$$

if \mathbb{P}-a.s. for all $t \in[0, T]$ we have

$$
\begin{equation*}
X_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, X_{s}\right) \mathrm{d} s+\underbrace{\int_{0}^{t} e^{-(t-s) A} \mathrm{~d} W_{s}}_{=: Z_{t}^{A}} \tag{IE}
\end{equation*}
$$

I.e. a mild solution.

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$,

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$, i.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega)
$$

However, Ω_{0}, a priori, depends on both X and Y
Question: Can \cap, be chosen independently of X and Y ?

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$, i.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega)
$$

However, Ω_{0}, a priori, depends on both X and Y.

Question: Can Ω_{0} be chosen independently of X and Y ?

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$, i.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega)
$$

However, Ω_{0}, a priori, depends on both X and Y.
Question: Can Ω_{0} be chosen independently of X and Y ?

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$, i.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega)
$$

However, Ω_{0}, a priori, depends on both X and Y.
Question: Can Ω_{0} be chosen independently of X and Y ?
I.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall X, Y: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega) ?
$$

Pathwise Uniqueness

Pathwise Uniqueness

Let $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ be two solutions then \mathbb{P}-a.s. $X_{t}=Y_{t}$ for all $t \in[0, T]$, i.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega)
$$

However, Ω_{0}, a priori, depends on both X and Y.
Question: Can Ω_{0} be chosen independently of X and Y ?
I.e.

$$
\exists \Omega_{0} \subseteq \Omega: \mathbb{P}\left[\Omega_{0}\right]=1: \forall X, Y: \forall(\omega, t) \in \Omega_{0} \times[0, T]: X_{t}(\omega)=Y_{t}(\omega) ?
$$

\rightsquigarrow Path-by-Path Uniqueness

Path-by-Path Uniqueness

Path-by-Path Uniqueness

We first plug in an $\omega \in \Omega$ into the corresponding integral equation of the mild form of (SDE)

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) d s+Z_{t}^{A}(\omega)
$$

Aim: For fixed $\omega \in \Omega$, find a unique continuous function $x:[0, T] \longrightarrow H$ satisfying the equation above.

Path-by-Path Uniqueness

Path-by-Path Uniqueness

We first plug in an $\omega \in \Omega$ into the corresponding integral equation of the mild form of (SDE)

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) \mathrm{d} s+Z_{t}^{A}(\omega)
$$

Aim: For fixed $\omega \in \Omega$, find a unique continuous function $x:[0, T] \longrightarrow H$ satisfying the equation above.

Uniqueness for ODEs in integral form perturbed by an Ornstein-Uhlenbeck path $Z^{A}(\omega)$

Path-by-Path Uniqueness

Path-by-Path Uniqueness

We first plug in an $\omega \in \Omega$ into the corresponding integral equation of the mild form of (SDE)

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) \mathrm{d} s+Z_{t}^{A}(\omega)
$$

Aim: For fixed $\omega \in \Omega$, find a unique continuous function $x:[0, T] \longrightarrow H$ satisfying the equation above.

Uniqueness for ODEs in integral form perturbed by an Ornstein-Uhlenbeck path $Z^{A}(\omega)$

Path-by-Path Uniqueness

Path-by-Path Uniqueness

We first plug in an $\omega \in \Omega$ into the corresponding integral equation of the mild form of (SDE)

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) \mathrm{d} s+Z_{t}^{A}(\omega)
$$

Aim: For fixed $\omega \in \Omega$, find a unique continuous function $x:[0, T] \longrightarrow H$ satisfying the equation above.

Uniqueness for ODEs in integral form perturbed by an Ornstein-Uhlenbeck path $Z^{A}(\omega)$.

Path-by-Path Uniqueness

Definition

Fix $\omega \in \Omega$. Denote by $\mathcal{S}(\omega)$ the set of all functions x for which

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) \mathrm{d} s+Z_{t}^{A}(\omega), \quad \forall t \in[0, T] \quad\left(\mathrm{IE}_{\omega}\right)
$$

holds.

Path-by-Path Uniqueness

Definition

Fix $\omega \in \Omega$. Denote by $\mathcal{S}(\omega)$ the set of all functions x for which

$$
x_{t}=\int_{0}^{t} e^{-(t-s) A} f\left(s, x_{s}\right) \mathrm{d} s+Z_{t}^{A}(\omega), \quad \forall t \in[0, T] \quad\left(\mathrm{IE}_{\omega}\right)
$$

holds.

Definition (Path-by-Path Uniqueness)

We say (SDE) exhibits path-by-path uniqueness if there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that

$$
\# \mathcal{S}(\omega) \leq 1, \quad \forall \omega \in \Omega_{0}
$$

Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set $N \subseteq \Omega$ such that all solutions coincide on $\Omega \backslash N$. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then $X=Y$ on $\Omega \backslash N_{X, Y}$. The null set depends on the solutions!

Path-by-path uniqueness \Longrightarrow Pathwise uniqueness

Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set $N \subseteq \Omega$ such that all solutions coincide on $\Omega \backslash N$. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then $X=Y$ on $\Omega \backslash N_{X, Y}$. The null set depends on the solutions!

Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set $N \subseteq \Omega$ such that all solutions coincide on $\Omega \backslash N$. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then $X=Y$ on $\Omega \backslash N_{X, Y}$. The null set depends on the solutions!

Path-by-path uniqueness \Longrightarrow Pathwise uniqueness

In the case $H:=\mathbb{R}^{d}$ and $A=0$ path-by-path uniqueness was proved by A. Davie in 2007.

Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set $N \subseteq \Omega$ such that all solutions coincide on $\Omega \backslash N$. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then $X=Y$ on $\Omega \backslash N_{X, Y}$. The null set depends on the solutions!

Path-by-path uniqueness \Longrightarrow Pathwise uniqueness

In the case $H:=\mathbb{R}^{d}$ and $A=0$ path-by-path uniqueness was proved by A. Davie in 2007.

Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set $N \subseteq \Omega$ such that all solutions coincide on $\Omega \backslash N$. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then $X=Y$ on $\Omega \backslash N_{X, Y}$. The null set depends on the solutions!

Path-by-path uniqueness \Longrightarrow Pathwise uniqueness

In the case $H:=\mathbb{R}^{d}$ and $A=0$ path-by-path uniqueness was proved by
A. Davie in 2007.

The case $A=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ was proved by O. Butkovsky and L. Mytnik in 2016.

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+f\left(t, Y_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+f\left(t, Y_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+f\left(t, Y_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

and
Y_{t} is \mathcal{F}_{t}-adapted $\left(W_{t}\right.$ is a cylindrical \mathcal{F}_{t}-Brownian motion $)$.

Using Girsanov's Transformation we construct an equivalent measure $\mathbb{Q} \approx \mathbb{P}($ and a cylindrical Brownian motion $\tilde{W})$ such that Y is an Ornstein-Uhlenbeck process, i.e.

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+f\left(t, Y_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

and
Y_{t} is \mathcal{F}_{t}-adapted (W_{t} is a cylindrical \mathcal{F}_{t}-Brownian motion).

Using Girsanov's Transformation we construct an equivalent measure $\mathbb{Q} \approx \mathbb{P}$ (and a cylindrical Brownian motion \tilde{W}) such that Y is an Ornstein-Uhlenbeck process, i.e.

The reduced problem

Strategy of the proof

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a probability space such that there exists a solution $\left(Y_{t}\right)_{t \in[0, T]}$ to

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+f\left(t, Y_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

and
Y_{t} is \mathcal{F}_{t}-adapted (W_{t} is a cylindrical \mathcal{F}_{t}-Brownian motion).

Using Girsanov's Transformation we construct an equivalent measure $\mathbb{Q} \approx \mathbb{P}$ (and a cylindrical Brownian motion \tilde{W}) such that Y is an Ornstein-Uhlenbeck process, i.e.

$$
\mathrm{d} Y_{t}=-A Y_{t} \mathrm{~d} t+\mathrm{d} \tilde{W}_{t}
$$

under $\mathbb{Q} \approx \mathbb{P}$.

The reduced problem
Fix $\omega \in \Omega$. Let x be a solution to $\left(\mathrm{IE}_{\omega}\right)$. Set $u:=x-Y(\omega)$.

The reduced problem
Fix $\omega \in \Omega$. Let x be a solution to $\left(\mathrm{IE}_{\omega}\right)$. Set $u:=x-Y(\omega)$. Then

$$
u(t)=\int_{0}^{t} e^{-(t-s) A} f(s, \underbrace{x_{s}}_{=u(s)+Y_{s}(\omega)})-e^{-(t-s) A} f\left(s, Y_{s}(\omega)\right) \mathrm{d} s
$$

Since Y is an Ornstein-Uhlenbeck process under $\mathbb{Q} \approx \mathbb{P}$ we have reduced our problem to:

Reduced problem

The reduced problem

Fix $\omega \in \Omega$. Let x be a solution to $\left(\mathrm{IE}_{\omega}\right)$. Set $u:=x-Y(\omega)$. Then

$$
u(t)=\int_{0}^{t} e^{-(t-s) A} f(s, \underbrace{X_{s}}_{=u(s)+Y_{s}(\omega)})-e^{-(t-s) A} f\left(s, Y_{s}(\omega)\right) \mathrm{d} s
$$

Since Y is an Ornstein-Uhlenbeck process under $\mathbb{Q} \approx \mathbb{P}$ we have reduced our problem to:

Reduced problem

The reduced problem

Fix $\omega \in \Omega$. Let x be a solution to $\left(\mathrm{IE}_{\omega}\right)$. Set $u:=x-Y(\omega)$. Then

$$
u(t)=\int_{0}^{t} e^{-(t-s) A} f(s, \underbrace{X_{s}}_{=u(s)+Y_{s}(\omega)})-e^{-(t-s) A} f\left(s, Y_{s}(\omega)\right) \mathrm{d} s
$$

Since Y is an Ornstein-Uhlenbeck process under $\mathbb{Q} \approx \mathbb{P}$ we have reduced our problem to:

Reduced problem

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s
$$

The reduced problem

Fix $\omega \in \Omega$. Let x be a solution to $\left(\mathrm{IE}_{\omega}\right)$. Set $u:=x-Y(\omega)$. Then

$$
u(t)=\int_{0}^{t} e^{-(t-s) A} f(s, \underbrace{x_{s}}_{=u(s)+Y_{s}(\omega)})-e^{-(t-s) A} f\left(s, Y_{s}(\omega)\right) \mathrm{d} s
$$

Since Y is an Ornstein-Uhlenbeck process under $\mathbb{Q} \approx \mathbb{P}$ we have reduced our problem to:

Reduced problem

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s \stackrel{!!!}{\Longrightarrow} u \equiv 0
$$

for all $\omega \in \Omega_{0} \subseteq \Omega, \mathbb{Q}\left[\Omega_{0}\right]=1$.

The reduced problem

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s \stackrel{!!!}{\Longrightarrow} u \equiv 0
$$

We consider the more abstract situation

where X is a given stochastic process.

The reduced problem

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s \stackrel{!!!}{\Longrightarrow} u \equiv 0 .
$$

We consider the more abstract situation

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s \stackrel{!!!!}{\Longrightarrow} u \equiv 0
$$

where X is a given stochastic process.

Regularizing Noise

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a stochastic process.

Regularizing Noise

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a stochastic process.

$$
\begin{equation*}
\mathbb{P}\left[\left|\varphi_{s, t}(x, y)\right|_{H}>\eta|t-s|^{h}|x-y|_{H} \mid \mathcal{F}_{s}\right] \leq C e^{-c \eta^{\alpha}} . \tag{*}
\end{equation*}
$$

Regularizing Noise

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a stochastic process.

$$
\begin{equation*}
\mathbb{P}\left[\left|\varphi_{s, t}(x, y)\right|_{H}>\eta|t-s|^{h}|x-y|_{H} \mid \mathcal{F}_{s}\right] \leq C e^{-c \eta^{\alpha}} . \tag{*}
\end{equation*}
$$

with

$$
\varphi_{s, t}(x, y):=\int_{s}^{t} f\left(r, x+X_{r}(\omega)\right)-f\left(r, y+X_{r}(\omega)\right) \mathrm{d} r
$$

Definition

Given $Q \subset H$. If $(*)$ holds for every $f:[0,1] \times H \rightarrow Q$ and $x, y \in Q$ then we say X is a Q-regularizing noise with index h and order α.

Regularizing Noise

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a stochastic process.

$$
\begin{equation*}
\mathbb{P}\left[\left|\varphi_{s, t}(x, y)\right|_{H}>\eta|t-s|^{h}|x-y|_{H} \mid \mathcal{F}_{s}\right] \leq C e^{-c \eta^{\alpha}} . \tag{*}
\end{equation*}
$$

with

$$
\varphi_{s, t}(x, y):=\int_{s}^{t} f\left(r, x+X_{r}(\omega)\right)-f\left(r, y+X_{r}(\omega)\right) \mathrm{d} r
$$

Definition

Given $Q \subseteq H$. If $(*)$ holds for every $f:[0,1] \times H \longrightarrow Q$ and $x, y \in Q$ then we say X is a Q-regularizing noise with index h and order α.

Regularizing Noise

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a stochastic process.

$$
\begin{equation*}
\mathbb{P}\left[\left|\varphi_{s, t}(x, y)\right|_{H}>\eta|t-s|^{h}|x-y|_{H} \mid \mathcal{F}_{s}\right] \leq C e^{-c \eta^{\alpha}} . \tag{*}
\end{equation*}
$$

with

$$
\varphi_{s, t}(x, y):=\int_{s}^{t} f\left(r, x+X_{r}(\omega)\right)-f\left(r, y+X_{r}(\omega)\right) \mathrm{d} r
$$

Definition

Given $Q \subseteq H$. If $(*)$ holds for every $f:[0,1] \times H \longrightarrow Q$ and $x, y \in Q$ then we say X is a Q-regularizing noise with index h and order α.
A. Davie 2007: Brownian motion in \mathbb{R}^{d} is regularizing with $h=\frac{1}{2}, \alpha=2$ L. W. 2016: Ornstein-Uhlenbeck process in H is regularizing with $h=\frac{1}{2}$, $\alpha=2$.

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\text {P }}$

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

$$
x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}} \quad \text { then } \quad x=(*, \ldots, *, 0, \ldots)
$$

Let $d_{m} \in \mathbb{N} \cup\{+\infty\}$ be the smallest number such that $x_{n}=0$ for all $n \geq d_{m}$ and all $x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

$$
x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}} \quad \text { then } \quad x=(*, \ldots, *, 0, \ldots)
$$

Let $d_{m} \in \mathbb{N} \cup\{+\infty\}$ be the smallest number such that $x_{n}=0$ for all $n \geq d_{m}$ and all $x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

$$
x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}} \quad \text { then } \quad x=(*, \ldots, *, 0, \ldots)
$$

Let $d_{m} \in \mathbb{N} \cup\{+\infty\}$ be the smallest number such that $x_{n}=0$ for all $n \geq d_{m}$ and all $x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

Definition

For $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$ we define the effective dimension of Q as

$$
\operatorname{ed}(Q):=\left(d_{m}\right)_{m \in \mathbb{N}}
$$

Effective Dimension

Let $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$. For every $m \in \mathbb{N}$ consider $Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

$$
x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}} \quad \text { then } \quad x=(*, \ldots, *, 0, \ldots)
$$

Let $d_{m} \in \mathbb{N} \cup\{+\infty\}$ be the smallest number such that $x_{n}=0$ for all $n \geq d_{m}$ and all $x \in Q \cap 2^{-m} \mathbb{Z}^{\mathbb{N}}$.

Definition

For $Q \subseteq H \subseteq \mathbb{R}^{\mathbb{N}}$ we define the effective dimension of Q as

$$
\operatorname{ed}(Q):=\left(d_{m}\right)_{m \in \mathbb{N}}
$$

$$
\begin{aligned}
& \lim \operatorname{ed}(Q)=+\infty \Longleftrightarrow \operatorname{dim} Q=+\infty \\
& \lim \operatorname{ed}(Q)<+\infty \Longleftrightarrow \operatorname{dim} Q<+\infty
\end{aligned}
$$

Properties of φ

Properties of $\varphi_{n, k}$

Recall that

$$
\varphi_{n, k}(x, \omega):=\int_{k 2^{-n}}^{(k+1) 2^{-n}} f\left(t, x+X_{t}(\omega)\right)-f\left(t, X_{t}(\omega)\right) \mathrm{d} t
$$

If X is a Q-regularizing noise and $\operatorname{ed}(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}$ we have

$$
\left|\varphi_{n, k}(x)\right|_{H} \leq C n^{\frac{1}{\alpha}+\frac{1}{\gamma}} 2^{-h n}\left(|x|_{H}+2^{-2^{n}}\right)
$$

Properties of φ

Properties of $\varphi_{\boldsymbol{n}, k}$

Recall that

$$
\varphi_{n, k}(x, \omega):=\int_{k 2^{-n}}^{(k+1) 2^{-n}} f\left(t, x+X_{t}(\omega)\right)-f\left(t, X_{t}(\omega)\right) \mathrm{d} t
$$

If X is a Q-regularizing noise and ed $(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}$ we have

$$
\left|\varphi_{n, k}(x)\right|_{H} \leq C n^{\frac{1}{\alpha}+\frac{1}{\gamma}} 2^{-h n}\left(|x|_{H}+2^{-2^{n}}\right)
$$

Properties of φ

Properties of $\varphi_{n, k}$

Recall that

$$
\varphi_{n, k}(x, \omega):=\int_{k 2^{-n}}^{(k+1) 2^{-n}} f\left(t, x+X_{t}(\omega)\right)-f\left(t, X_{t}(\omega)\right) \mathrm{d} t
$$

If X is a Q-regularizing noise and $\operatorname{ed}(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}$ we have

$$
\left|\varphi_{n, k}(x)\right|_{H} \leq C n^{\frac{1}{\alpha}+\frac{1}{\gamma}} 2^{-h n}\left(|x|_{H}+2^{-2^{n}}\right)
$$

and

$$
\left|\varphi_{n, k}(x)-\varphi_{n, k}(y)\right|_{H} \leq C\left(n^{\frac{1}{\alpha}} 2^{-\delta n}|x-y|_{H}+2^{-2^{\theta n}}\right)
$$

where $\theta:=(h-\delta) \frac{\alpha \gamma}{\alpha+\gamma+2}$.

Approximation Theorem

Theorem (Approximation Theorem)

Let $h_{n}:[0,1] \longrightarrow H$ be a sequence of Lipschitz continuous functions converging pointwise to a Lipschitz function h, then

$$
\int_{0}^{1} f\left(t, X_{t}(\omega)+h_{n}(t)\right) \mathrm{d} t \stackrel{n \rightarrow \infty}{\longrightarrow} \int_{0}^{1} f\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t
$$

Approximation Theorem

$$
\int_{0}^{1} f\left(t, X_{t}(\omega)+h_{n}(t)\right) d t \xrightarrow{n \rightarrow \infty} \int_{0}^{1} f\left(t, X_{t}(\omega)+h(t)\right) d t
$$

If f were continuous this would follow from Lebesgue's dominated convergence Theorem.
We are left with proving that
uniformly in h. We can construct \bar{f} such that $\{f \neq \bar{f}\}$ is open, so that by exploiting the lower semi-continuity we have

Approximation Theorem

$$
\int_{0}^{1} f\left(t, X_{t}(\omega)+h_{n}(t)\right) d t \stackrel{n \rightarrow \infty}{\longrightarrow} \int_{0}^{1} f\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t
$$

If f were continuous this would follow from Lebesgue's dominated convergence Theorem. We approximate f by a continuous function \bar{f}. We are left with proving that

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t \leq \varepsilon
$$

uniformly in h.

$\neq \bar{f}\}$ is open, so that by exploiting the lower semi-continuity we have

Approximation Theorem

$$
\int_{0}^{1} f\left(t, X_{t}(\omega)+h_{n}(t)\right) \mathrm{d} t \xrightarrow{n \rightarrow \infty} \int_{0}^{1} f\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t .
$$

If f were continuous this would follow from Lebesgue's dominated convergence Theorem. We approximate f by a continuous function \bar{f}. We are left with proving that

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t \leq \varepsilon
$$

uniformly in h. We can construct \bar{f} such that $\{f \neq \bar{f}\}$ is open, so that by exploiting the lower semi-continuity we have

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{\digamma}\}}\left(t, X_{t}(\omega)+h(t)\right) \mathrm{d} t \leq \lim _{n \rightarrow \infty} \int_{0}^{1} \mathbb{1}_{\{f \neq \bar{\digamma}\}}\left(t, X_{t}(\omega)+h_{n}(t)\right) \mathrm{d} t .
$$

Approximation Theorem

We rewrite the limit as a telescoping sum

$$
\begin{aligned}
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t+\sum_{n=m}^{\infty} & \int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{n+1}(t)\right) \\
& -\mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{n}(t)\right) \mathrm{d} t
\end{aligned}
$$

where m will be chosen later.
dyadic intervals $\left[k 2^{-(n+1)},(k+1) 2^{-(n+1)}[\right.$.

Approximation Theorem

We rewrite the limit as a telescoping sum

$$
\begin{aligned}
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t+\sum_{n=m}^{\infty} & \int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{n+1}(t)\right) \\
& -\mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{n}(t)\right) \mathrm{d} t
\end{aligned}
$$

where m will be chosen later. We split the second integral into the dyadic intervals $\left[k 2^{-(n+1)},(k+1) 2^{-(n+1)}[\right.$.

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t
$$

$+\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1} \varphi_{n+1, k}\left(\mathbb{1}_{\{f \neq \bar{f}\}} ; h_{n+1}\left(k 2^{-(n+1)}\right)\right)-\varphi_{n+1, k}\left(\mathbb{1}_{\{f \neq \bar{f}\}} ; h_{n}\left(k 2^{-(n+1)}\right)\right)$.

Approximation Theorem

Using the estimate for $\varphi_{n+1, k}$ this is bounded by

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t
$$

$$
+\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1}\left(n^{\frac{1}{\alpha}} 2^{-\delta n}\left|h_{n+1}\left(k 2^{-(n+1)}\right)-h_{n}\left(k 2^{-(n+1)}\right)\right|_{H}+2^{-2^{\theta n}}\right)
$$

Using that h_{n} is Lipschitz continuous, this is, furthermore, bounded by

Approximation Theorem

Using the estimate for $\varphi_{n+1, k}$ this is bounded by

$$
\begin{gathered}
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t \\
+\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1}\left(n^{\frac{1}{\alpha}} 2^{-\delta n}\left|h_{n+1}\left(k 2^{-(n+1)}\right)-h_{n}\left(k 2^{-(n+1)}\right)\right|_{H}+2^{-2^{\theta n}}\right)
\end{gathered}
$$

Using that h_{n} is Lipschitz continuous, this is, furthermore, bounded by

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t+\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1}\left(n^{\frac{1}{\alpha}} 2^{-\delta n} 2^{-n}+2^{-2^{\theta n}}\right) .
$$

Approximation Theorem

Using the estimate for $\varphi_{n+1, k}$ this is bounded by

$$
\begin{gathered}
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t \\
+\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1}\left(n^{\frac{1}{\alpha}} 2^{-\delta n}\left|h_{n+1}\left(k 2^{-(n+1)}\right)-h_{n}\left(k 2^{-(n+1)}\right)\right|_{H}+2^{-2^{\theta n}}\right) .
\end{gathered}
$$

Using that h_{n} is Lipschitz continuous, this is, furthermore, bounded by

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t+\underbrace{\sum_{n=m}^{\infty} \sum_{k=0}^{2^{n}-1}\left(n^{\frac{1}{\alpha}} 2^{-\delta n} 2^{-n}+2^{-2^{\theta n}}\right)}_{\longrightarrow 0 \text { as } m \rightarrow \infty} .
$$

Approximation Theorem

So that we are left with estimating

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t .
$$

However, we only have to show that the above expression is small for finitely many h_{m}. This can be achieved by constructing \bar{f} in such a way that $\{f \neq \bar{f}\}$ is sufficiently small.

Approximation Theorem

So that we are left with estimating

$$
\int_{0}^{1} \mathbb{1}_{\{f \neq \bar{f}\}}\left(t, X_{t}(\omega)+h_{m}(t)\right) \mathrm{d} t .
$$

However, we only have to show that the above expression is small for finitely many h_{m}. This can be achieved by constructing \bar{f} in such a way that $\{f \neq \bar{f}\}$ is sufficiently small.

Main result (in abstract form)

Main result (in abstract form)
Let

- $Q \subseteq H$ such that ed $(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}, \gamma>2$,
- X a Q-regularizing noise,

Main result (in abstract form)
Let

- $Q \subseteq H$ such that ed $(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}, \gamma>2$,
- X a Q-regularizing noise,

Main result (in abstract form)
Let

- $Q \subseteq H$ such that ed $(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}, \gamma>2$,
- X a Q-regularizing noise,
- $f:[0,1] \times H \longrightarrow Q$.

Then there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that

Main result (in abstract form)
Let

- $Q \subseteq H$ such that $\operatorname{ed}(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}, \gamma>2$,
- X a Q-regularizing noise,
- $f:[0,1] \times H \longrightarrow Q$.

Then there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that

Main result (in abstract form)

Let

- $Q \subseteq H$ such that $\operatorname{ed}(Q)_{m} \lesssim \ln (m+1)^{1 / \gamma}, \gamma>2$,
- X a Q-regularizing noise,
- $f:[0,1] \times H \longrightarrow Q$.

Then there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s \Longrightarrow u \equiv 0
$$

for all $\omega \in \Omega_{0}$.

Main result

Main result

Let

$$
\begin{gathered}
Q:=\left\{x \in \mathbb{R}^{\mathbb{N}}: \sum_{n \in \mathbb{N}} \lambda_{n} e^{2 \lambda_{n}}\left|x_{n}\right|^{2}<C\right\} \\
\cap\left\{x \in \mathbb{R}^{\mathbb{N}}:\left|x_{n}\right|<\exp \left(-e^{c n^{\gamma}}\right)\right\} \quad \gamma>2 \\
X:=Z^{A} .
\end{gathered}
$$

Then there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that
$u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s \Longrightarrow u \equiv 0$

Main result

Main result

Let

$$
\begin{gathered}
Q:=\left\{x \in \mathbb{R}^{\mathbb{N}}: \sum_{n \in \mathbb{N}} \lambda_{n} e^{2 \lambda_{n}}\left|x_{n}\right|^{2}<C\right\} \\
\cap\left\{x \in \mathbb{R}^{\mathbb{N}}:\left|x_{n}\right|<\exp \left(-e^{c n^{\gamma}}\right)\right\} \quad \gamma>2 \\
X:=Z^{A} .
\end{gathered}
$$

Then there exists a measurable set $\Omega_{0} \subseteq \Omega$ with $\mathbb{P}\left[\Omega_{0}\right]=1$ such that

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+Z_{s}^{A}(\omega)\right)-f\left(s, Z_{s}^{A}(\omega)\right)\right) \mathrm{d} s \Longrightarrow u \equiv 0
$$

for all $\omega \in \Omega_{0}$.

Main result

Assumptions on the drift $f=\left(f_{n}\right)_{n \in \mathbb{N}}$
We assume that

- $\|f\|_{\infty, A}:=\sup _{t \in[0, T], x \in H} \sum_{n \in \mathbb{N}} \lambda_{n} e^{2 \lambda_{n}}\left|f_{n}(t, x)\right|^{2}<\infty$
- $\left\|f_{n}\right\|_{\infty}=\sup _{t \in[0, T], x \in H}\left|f_{n}(t, x)\right| \leq \exp \left(-e^{n^{\gamma}}\right)$, with $\gamma>2$

Main result

Theorem (Main result, LW17)

Under the above assumptions path-by-path uniqueness holds for equation (SDE).

Idea of the proof of the main result

Idea of the main proof

Fix an $\omega \in \Omega$. Let u be a function solving

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s
$$

We have to show that $u \equiv 0$. For $n \in \mathbb{N}$ let $k \in\left\{0, \ldots, 2^{n}-1\right\}$. We have

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H}
$$

Idea of the proof of the main result

Idea of the main proof

Fix an $\omega \in \Omega$. Let u be a function solving

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s
$$

We have to show that $u \equiv 0$. For $n \in \mathbb{N}$ let $k \in\left\{0, \ldots, 2^{n}-1\right\}$. We have

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H}
$$

Idea of the proof of the main result

Idea of the main proof

Fix an $\omega \in \Omega$. Let u be a function solving

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s
$$

We have to show that $u \equiv 0$. For $n \in \mathbb{N}$ let $k \in\left\{0, \ldots, 2^{n}-1\right\}$. We have

$$
\begin{gathered}
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \\
\left.\approx \int_{k 2^{-n}}^{(k+1) 2^{-n}} e^{-\left((k+1) 2^{-n}-s\right) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s\right|_{H}
\end{gathered}
$$

Idea of the proof of the main result

Idea of the main proof

Fix an $\omega \in \Omega$. Let u be a function solving

$$
u(t)=\int_{0}^{t} e^{-(t-s) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s
$$

We have to show that $u \equiv 0$. For $n \in \mathbb{N}$ let $k \in\left\{0, \ldots, 2^{n}-1\right\}$. We have

$$
\begin{gathered}
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \\
\left.\approx \int_{k 2^{-n}}^{(k+1) 2^{-n}} e^{-\left((k+1) 2^{-n}-s\right) A}\left(f\left(s, u(s)+X_{s}(\omega)\right)-f\left(s, X_{s}(\omega)\right)\right) \mathrm{d} s\right|_{H} \\
\approx\left|\varphi_{n, k}(u)\right|_{H}
\end{gathered}
$$

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx\left|\varphi_{n, k}(u)\right|_{H}
$$

Let u_{ℓ} be a sequence of functions, which are constant on the dyadic intervals $\left[k 2^{-\ell},(k+1) 2^{-\ell}\left[\right.\right.$, converge to u. Using that $\varphi_{n, k}$ is continuous we have

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx\left|\varphi_{n, k}(u)\right|_{H}
$$

Let u_{ℓ} be a sequence of functions, which are constant on the dyadic intervals $\left[k 2^{-\ell},(k+1) 2^{-\ell}\right.$ [, converge to u.

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx \lim _{\ell \rightarrow \infty}\left|\varphi_{n, k}\left(u_{\ell}\right)\right|_{H} .
$$

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx\left|\varphi_{n, k}(u)\right|_{H}
$$

Let u_{ℓ} be a sequence of functions, which are constant on the dyadic intervals $\left[k 2^{-\ell},(k+1) 2^{-\ell}\left[\right.\right.$, converge to u. Using that $\varphi_{n, k}$ is continuous we have

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx \lim _{\ell \rightarrow \infty}\left|\varphi_{n, k}\left(u_{\ell}\right)\right|_{H}
$$

We rewrite the above limit as a telescoping sum

Using various estimates we obtain

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx\left|\varphi_{n, k}(u)\right|_{H}
$$

Let u_{ℓ} be a sequence of functions, which are constant on the dyadic intervals $\left[k 2^{-\ell},(k+1) 2^{-\ell}\left[\right.\right.$, converge to u. Using that $\varphi_{n, k}$ is continuous we have

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx \lim _{\ell \rightarrow \infty}\left|\varphi_{n, k}\left(u_{\ell}\right)\right|_{H} .
$$

We rewrite the above limit as a telescoping sum

$$
\left|\varphi_{n, k}\left(u_{n}\right)\right|_{H}+\sum_{\ell=n}^{\infty}\left|\varphi_{n, k}\left(u_{\ell+1}\right)-\varphi_{n, k}\left(u_{\ell}\right)\right|_{H} .
$$

Using various estimates we obtain

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx\left|\varphi_{n, k}(u)\right|_{H}
$$

Let u_{ℓ} be a sequence of functions, which are constant on the dyadic intervals $\left[k 2^{-\ell},(k+1) 2^{-\ell}\left[\right.\right.$, converge to u. Using that $\varphi_{n, k}$ is continuous we have

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \approx \lim _{\ell \rightarrow \infty}\left|\varphi_{n, k}\left(u_{\ell}\right)\right|_{H} .
$$

We rewrite the above limit as a telescoping sum

$$
\left|\varphi_{n, k}\left(u_{n}\right)\right|_{H}+\sum_{\ell=n}^{\infty}\left|\varphi_{n, k}\left(u_{\ell+1}\right)-\varphi_{n, k}\left(u_{\ell}\right)\right|_{H} .
$$

Using various estimates we obtain

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

From this we use a discrete log-type Grownwall Inequality.

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

From this we use a discrete log-type Grownwall Inequality.

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

From this we use a discrete log-type Grownwall Inequality.
Lemma (Discrete log-type Grownwall inequality)
Let $0<\beta_{0}, \ldots, \beta_{2^{n}}<1$ and assume that

$$
\left|\beta_{k+1}-\beta_{k}\right| \leq C 2^{-n} \beta_{k} \log \left(1 / \beta_{k}\right)
$$

holds for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$. Then, we have

$$
\beta_{k} \leq \exp \left(\log \left(\beta_{0}\right) e^{-2 C-1}\right)
$$

for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$.

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

From this we use a discrete log-type Grownwall Inequality.
Lemma (Discrete log-type Grownwall inequality)
Let $0<\beta_{0}, \ldots, \beta_{2^{n}}<1$ and assume that

$$
\left|\beta_{k+1}-\beta_{k}\right| \leq C 2^{-n} \beta_{k} \log \left(1 / \beta_{k}\right)
$$

holds for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$. Then, we have

$$
\beta_{k} \leq \exp \left(\log \left(\beta_{0}\right) e^{-2 C-1}\right)
$$

for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$.
Furthermore, since $u(0)=0$ we conclude $u \equiv 0$.

Idea of the proof of the main result

$$
\left|u\left((k+1) 2^{-n}\right)-u\left(k 2^{-n}\right)\right|_{H} \leq C 2^{-n}\left|u\left(k 2^{-n}\right)\right|_{H} \ln \left(1 /\left|u\left(k 2^{-n}\right)\right|_{H}\right) .
$$

From this we use a discrete log-type Grownwall Inequality.

Lemma (Discrete log-type Grownwall inequality)

Let $0<\beta_{0}, \ldots, \beta_{2^{n}}<1$ and assume that

$$
\left|\beta_{k+1}-\beta_{k}\right| \leq C 2^{-n} \beta_{k} \log \left(1 / \beta_{k}\right)
$$

holds for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$. Then, we have

$$
\beta_{k} \leq \exp \left(\log \left(\beta_{0}\right) e^{-2 C-1}\right)
$$

for all $k \in\left\{0, \ldots, 2^{n}-1\right\}$.
Furthermore, since $u(0)=0$ we conclude $u \equiv 0$.
This solves the reduced problem and completes therefore the proof of the main result.

Strong existence

The reduction via Girsanov transformation only works if our filtered probability space is equipped with a solution (which is \mathcal{F}_{t}-measurable).

Theorem
 Given any filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ there is a path-by-path unique solution.

On any filtered probability space we can prove that

Strong existence

The reduction via Girsanov transformation only works if our filtered probability space is equipped with a solution (which is \mathcal{F}_{t}-measurable).

Theorem

Given any filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ there is a path-by-path unique solution.

On any filtered probability space we can prove that

Strong existence

The reduction via Girsanov transformation only works if our filtered probability space is equipped with a solution (which is \mathcal{F}_{t}-measurable).

Theorem

Given any filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ there is a path-by-path unique solution.

On any filtered probability space we can prove that
$(X, W),(Y, W)$ solutions $\quad \Longrightarrow \quad X=Y$.

Hence, by Yamada-Watanabe we obtain a strong solution.
Any filtered probability space is therefore equinned with a solution, hence
we can invoke our main result

Strong existence

The reduction via Girsanov transformation only works if our filtered probability space is equipped with a solution (which is \mathcal{F}_{t}-measurable).

Theorem

Given any filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ there is a path-by-path unique solution.

On any filtered probability space we can prove that

$$
(X, W),(Y, W) \text { solutions } \quad \Longrightarrow \quad X=Y
$$

Hence, by Yamada-Watanabe we obtain a strong solution.
Any filtered probability space is therefore equipped with a solution, hence we can invoke our main result.

Strong existence

The reduction via Girsanov transformation only works if our filtered probability space is equipped with a solution (which is $\mathcal{F}_{t^{-}}$-measurable).

Theorem

Given any filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ there is a path-by-path unique solution.

On any filtered probability space we can prove that

$$
(X, W),(Y, W) \text { solutions } \quad \Longrightarrow \quad X=Y
$$

Hence, by Yamada-Watanabe we obtain a strong solution.
Any filtered probability space is therefore equipped with a solution, hence we can invoke our main result.

Thank you for your attention!

