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Stochastic Differential Equations

Stochastic Differential Equations in infinite dimensions

On a fixed probability space (Ω,F , (Ft)t∈[0,T ],P) we consider the
stochastic differential equation

dXt = −AXtdt + f (t,Xt)dt + dWt , X0 = 0 (SDE).

• W is a cylindrical Brownian motion,

• f : [0,T ]× H −→ H is a bounded Borel function,

• A : D(A) −→ H is positive definite, self-adjoint, linear, A−1 is trace
class.

Aen = λnen, with λn > 0 and∑
n∈N

λ−1
n <∞.
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Stochastic Differential Equations

Solution

We say a stochastic process (Xt)t∈[0,T ] is a solution to

dXt = −AXtdt + f (t,Xt)dt + dWt , X0 = 0 (SDE)

if P-a.s. for all t ∈ [0,T ] we have

Xt =

t∫
0

e−(t−s)Af (s,Xs) ds +

t∫
0

e−(t−s)A dWs︸ ︷︷ ︸
=:ZA

t

. (IE)

I.e. a mild solution.
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Pathwise Uniqueness

Pathwise Uniqueness

Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two solutions then P-a.s. Xt = Yt for
all t ∈ [0,T ], i.e.

∃Ω0 ⊆ Ω: P[Ω0] = 1: ∀(ω, t) ∈ Ω0 × [0,T ] : Xt(ω) = Yt(ω).

However, Ω0, a priori, depends on both X and Y .

Question: Can Ω0 be chosen independently of X and Y ?
I.e.

∃Ω0 ⊆ Ω: P[Ω0] = 1: ∀X ,Y : ∀(ω, t) ∈ Ω0 × [0,T ] : Xt(ω) = Yt(ω)?

 Path-by-Path Uniqueness
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Path-by-Path Uniqueness

We first plug in an ω ∈ Ω into the corresponding integral equation of the
mild form of (SDE)

xt =

t∫
0

e−(t−s)Af (s, xs) ds + ZA
t (ω). (IEω)

Aim: For fixed ω ∈ Ω, find a unique continuous function
x : [0,T ] −→ H satisfying the equation above.

Uniqueness for ODEs in integral form perturbed by an
Ornstein–Uhlenbeck path ZA(ω).
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Path-by-Path Uniqueness

Definition

Fix ω ∈ Ω. Denote by S(ω) the set of all functions x for which

xt =

t∫
0

e−(t−s)Af (s, xs) ds + ZA
t (ω), ∀t ∈ [0,T ] (IEω)

holds.

Definition (Path-by-Path Uniqueness)

We say (SDE) exhibits path-by-path uniqueness if there exists a
measurable set Ω0 ⊆ Ω with P[Ω0] = 1 such that

#S(ω) ≤ 1, ∀ω ∈ Ω0.
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Path-by-Path Uniqueness VS. Pathwise Uniqueness

Path-by-path uniqueness: There is a null set N ⊆ Ω such that all
solutions coincide on Ω \N. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X , Y be two solutions. Then X = Y on
Ω \ NX ,Y . The null set depends on the solutions!

Path-by-path uniqueness =⇒ Pathwise uniqueness

In the case H := Rd and A = 0 path-by-path uniqueness was proved by
A. Davie in 2007.
The case A = − d2

dx2 was proved by O. Butkovsky and L. Mytnik in 2016.
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The reduced problem

Strategy of the proof

Let (Ω,F , (Ft)t∈[0,T ],P) be a probability space such that there exists a
solution (Yt)t∈[0,T ] to

dYt = −AYt dt + f (t,Yt) dt + dWt

and

Yt is Ft-adapted (Wt is a cylindrical Ft-Brownian motion).

Using Girsanov’s Transformation we construct an equivalent measure
Q ≈ P (and a cylindrical Brownian motion W̃ ) such that Y is an
Ornstein–Uhlenbeck process, i.e.

dYt = −AYt dt + dW̃t

under Q ≈ P.
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The reduced problem

Fix ω ∈ Ω. Let x be a solution to (IEω). Set u := x − Y (ω). Then

u(t) =

t∫
0

e−(t−s)Af (s, xs︸︷︷︸
=u(s)+Ys(ω)

)− e−(t−s)Af (s,Ys(ω)) ds.

Since Y is an Ornstein–Uhlenbeck process under Q ≈ P we have reduced
our problem to:

Reduced problem

u(t) =

t∫
0

e−(t−s)A
(
f (s, u(s) + ZA

s (ω))− f (s,ZA
s (ω))

)
ds

!!!
=⇒ u ≡ 0

for all ω ∈ Ω0 ⊆ Ω, Q[Ω0] = 1.
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t∫
0

e−(t−s)Af (s, xs︸︷︷︸
=u(s)+Ys(ω)

)− e−(t−s)Af (s,Ys(ω)) ds.

Since Y is an Ornstein–Uhlenbeck process under Q ≈ P we have reduced
our problem to:

Reduced problem

u(t) =

t∫
0

e−(t−s)A
(
f (s, u(s) + ZA

s (ω))− f (s,ZA
s (ω))

)
ds

!!!
=⇒ u ≡ 0

for all ω ∈ Ω0 ⊆ Ω, Q[Ω0] = 1.
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s (ω))

)
ds

!!!
=⇒ u ≡ 0.

We consider the more abstract situation

u(t) =

t∫
0

e−(t−s)A (f (s, u(s) + Xs(ω))− f (s,Xs(ω))) ds
!!!

=⇒ u ≡ 0,

where X is a given stochastic process.
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Regularizing Noise

Let (Xt ,Ft) be a stochastic process.

P
[
|ϕs,t(x , y)|H > η|t − s|h|x − y |H

∣∣∣Fs

]
≤ Ce−cη

α
. (∗)

with

ϕs,t(x , y) :=

t∫
s

f (r , x + Xr (ω))− f (r , y + Xr (ω)) dr .

Definition

Given Q ⊆ H. If (∗) holds for every f : [0, 1]× H −→ Q and x , y ∈ Q
then we say X is a Q-regularizing noise with index h and order α.

A. Davie 2007: Brownian motion in Rd is regularizing with h = 1
2 , α = 2

L. W. 2016: Ornstein–Uhlenbeck process in H is regularizing with h = 1
2 ,

α = 2.
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Effective Dimension

Let Q ⊆ H ⊆ RN. For every m ∈ N consider Q ∩ 2−mZN.

x ∈ Q ∩ 2−mZN then x = (∗, ..., ∗, 0, ...).

Let dm ∈ N ∪ {+∞} be the smallest number such that xn = 0 for all
n ≥ dm and all x ∈ Q ∩ 2−mZN.

Definition

For Q ⊆ H ⊆ RN we define the effective dimension of Q as

ed(Q) := (dm)m∈N

lim ed(Q) = +∞⇐⇒ dimQ = +∞

lim ed(Q) < +∞⇐⇒ dimQ < +∞
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Properties of ϕ

Properties of ϕn,k
Recall that

ϕn,k(x , ω) :=

(k+1)2−n∫
k2−n

f (t, x + Xt(ω))− f (t,Xt(ω)) dt.

If X is a Q-regularizing noise and ed(Q)m . ln(m + 1)1/γ we have

|ϕn,k(x)|H ≤ Cn
1
α

+ 1
γ 2−hn

(
|x |H + 2−2n

)
and

|ϕn,k(x)− ϕn,k(y)|H ≤ C
(
n

1
α 2−δn|x − y |H + 2−2θn

)
,

where θ := (h − δ) αγ
α+γ+2 .
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Approximation Theorem

Theorem (Approximation Theorem)

Let hn : [0, 1] −→ H be a sequence of Lipschitz continuous functions
converging pointwise to a Lipschitz function h, then

1∫
0

f (t,Xt(ω) + hn(t)) dt
n→∞−→

1∫
0

f (t,Xt(ω) + h(t)) dt.
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Approximation Theorem

1∫
0

f (t,Xt(ω) + hn(t)) dt
n→∞−→

1∫
0

f (t,Xt(ω) + h(t)) dt.

If f were continuous this would follow from Lebesgue’s dominated
convergence Theorem. We approximate f by a continuous function f .
We are left with proving that

1∫
0

1{f 6=f }(t,Xt(ω) + h(t)) dt ≤ ε

uniformly in h. We can construct f such that {f 6= f } is open, so that by
exploiting the lower semi-continuity we have

1∫
0

1{f 6=f }(t,Xt(ω) + h(t)) dt ≤ lim
n→∞

1∫
0

1{f 6=f }(t,Xt(ω) + hn(t)) dt.
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We rewrite the limit as a telescoping sum

1∫
0

1{f 6=f }(t,Xt(ω) + hm(t)) dt +
∞∑

n=m

1∫
0

1{f 6=f }(t,Xt(ω) + hn+1(t))

−1{f 6=f }(t,Xt(ω) + hn(t)) dt,

where m will be chosen later. We split the second integral into the
dyadic intervals [k2−(n+1), (k + 1)2−(n+1)[.

1∫
0

1{f 6=f }(t,Xt(ω) + hm(t)) dt

+
∞∑

n=m

2n−1∑
k=0

ϕn+1,k(1{f 6=f }; hn+1(k2−(n+1)))−ϕn+1,k(1{f 6=f }; hn(k2−(n+1))).
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Using the estimate for ϕn+1,k this is bounded by

1∫
0

1{f 6=f }(t,Xt(ω) + hm(t))dt

+
∞∑

n=m

2n−1∑
k=0

(
n

1
α 2−δn|hn+1(k2−(n+1))− hn(k2−(n+1))|H + 2−2θn

)
.

Using that hn is Lipschitz continuous, this is, furthermore, bounded by

1∫
0

1{f 6=f }(t,Xt(ω) + hm(t)) dt +
∞∑

n=m

2n−1∑
k=0

(
n

1
α 2−δn2−n + 2−2θn

)
.
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Using that hn is Lipschitz continuous, this is, furthermore, bounded by
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0

1{f 6=f }(t,Xt(ω) + hm(t)) dt +
∞∑

n=m

2n−1∑
k=0

(
n

1
α 2−δn2−n + 2−2θn

)
︸ ︷︷ ︸

−→0 as m→∞

.



Lukas Wresch

Motivation &
Definitions

Strategy of
the proof

Proof of the
Approximation
Theorem

Main result

Approximation Theorem

So that we are left with estimating

1∫
0

1{f 6=f }(t,Xt(ω) + hm(t)) dt.

However, we only have to show that the above expression is small for
finitely many hm. This can be achieved by constructing f in such a way
that {f 6= f } is sufficiently small.
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Main result (in abstract form)
Let

• Q ⊆ H such that ed(Q)m . ln(m + 1)1/γ , γ > 2,

• X a Q-regularizing noise,

• f : [0, 1]× H −→ Q.

Then there exists a measurable set Ω0 ⊆ Ω with P[Ω0] = 1 such that

u(t) =

t∫
0

e−(t−s)A (f (s, u(s) + Xs(ω))− f (s,Xs(ω))) ds =⇒ u ≡ 0

for all ω ∈ Ω0.
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Q :={x ∈ RN :
∑
n∈N

λne
2λn |xn|2 < C}

∩{x ∈ RN : |xn| < exp(−ecnγ )} γ > 2

X := ZA.

Then there exists a measurable set Ω0 ⊆ Ω with P[Ω0] = 1 such that

u(t) =
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0

e−(t−s)A
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Assumptions on the drift f = (fn)n∈N

We assume that

• ‖f ‖∞,A := sup
t∈[0,T ],x∈H

∑
n∈N

λne
2λn |fn(t, x)|2 <∞

• ‖fn‖∞ = sup
t∈[0,T ],x∈H

|fn(t, x)| ≤ exp
(
−enγ

)
, with γ > 2

Main result

Theorem (Main result, LW17)

Under the above assumptions path-by-path uniqueness holds for equation
(SDE).
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Idea of the main proof
Fix an ω ∈ Ω. Let u be a function solving

u(t) =

t∫
0

e−(t−s)A (f (s, u(s) + Xs(ω))− f (s,Xs(ω))) ds

We have to show that u ≡ 0. For n ∈ N let k ∈ {0, ..., 2n − 1}. We have

|u((k + 1)2−n)− u(k2−n)|H

≈

∣∣∣∣∣∣∣
(k+1)2−n∫
k2−n

e−((k+1)2−n−s)A (f (s, u(s) + Xs(ω))− f (s,Xs(ω))) ds

∣∣∣∣∣∣∣
H

≈ |ϕn,k(u)|H
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|u((k + 1)2−n)− u(k2−n)|H ≈ |ϕn,k(u)|H
Let u` be a sequence of functions, which are constant on the dyadic
intervals [k2−`, (k + 1)2−`[, converge to u. Using that ϕn,k is
continuous we have

|u((k + 1)2−n)− u(k2−n)|H ≈ lim
`→∞

|ϕn,k(u`)|H .

We rewrite the above limit as a telescoping sum

|ϕn,k(un)|H +
∞∑
`=n

|ϕn,k(u`+1)− ϕn,k(u`)|H .

Using various estimates we obtain

|u((k + 1)2−n)− u(k2−n)|H ≤ C2−n|u(k2−n)|H ln(1/|u(k2−n)|H).
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|u((k + 1)2−n)− u(k2−n)|H ≤ C2−n|u(k2−n)|H ln(1/|u(k2−n)|H).

From this we use a discrete log-type Grownwall Inequality.

Lemma (Discrete log-type Grownwall inequality)

Let 0 < β0, ..., β2n < 1 and assume that

|βk+1 − βk | ≤ C2−nβk log(1/βk)

holds for all k ∈ {0, ..., 2n − 1}. Then, we have

βk ≤ exp
(

log(β0)e−2C−1
)

for all k ∈ {0, ..., 2n − 1}.

Furthermore, since u(0) = 0 we conclude u ≡ 0.
This solves the reduced problem and completes therefore the proof of the
main result. �
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Strong existence

The reduction via Girsanov transformation only works if our filtered
probability space is equipped with a solution (which is Ft-measurable).

Theorem

Given any filtered probability space (Ω,F , (Ft)t∈[0,T ],P) there is a
path-by-path unique solution.

On any filtered probability space we can prove that

(X ,W ), (Y ,W ) solutions =⇒ X = Y .

Hence, by Yamada–Watanabe we obtain a strong solution.

Any filtered probability space is therefore equipped with a solution, hence
we can invoke our main result.

�
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