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Stochastic Differential Equations in infinite dimensions

On a fixed probability space (2, F, (Ft)tefo, 7], P) we consider the
stochastic differential equation

dX; = —AXdt + f(t, X)dt +dW,,  Xo=0  (SDE).

e W is a cylindrical Brownian motion,
e f:[0, T] x H— H is a bounded Borel function,
o A: D(A) — H is positive definite, self-adjoint, linear, A~! is trace

class. )
Ae, = A\nen, with A\, > 0 and

Z)\;l < 00.

neN
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We first plug in an w € £ into the corresponding integral equation of the
mild form of (SDE)

t
e = / e A (s x) ds + ZA(w).  (IE.)
0

Aim: For fixed w € €, find a unique continuous function
x: [0, T] — H satisfying the equation above.

Uniqueness for ODEs in integral form perturbed by an
Ornstein—Uhlenbeck path Z4(w).
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Fix w € Q. Denote by S(w) the set of all functions x for which

t
S / e (Af(s x) ds + ZAW),  Vee[0,T]  (IE.)
0

holds.

Definition (Path-by-Path Uniqueness)

We say (SDE) exhibits path-by-path uniqueness if there exists a
measurable set Qo C Q with P[Qp] = 1 such that

#S(w) <1, Yw € Q.
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Path-by-path uniqueness: There is a null set N C Q such that all
solutions coincide on 2\ N. (Uniqueness in the sense of random ODEs).

Pathwise uniqueness: Let X, Y be two solutions. Then X = Y on
Q\ Nx,y. The null set depends on the solutions!

Path-by-path uniqueness = Pathwise uniqueness

In the case H := R and A = 0 path-by-path uniqueness was proved by
A. Davie in 2007
The case A = —= was proved by O. Butkovsky and L. Mytnik in 2016.



The reduced problem

Strategy of the proof



The reduced problem

Strategy of the proof

Let (2, F, (Ft)tejo, 7], P) be a probability space such that there exists a
solution (Y;)¢cpo,7] to



The reduced problem

Strategy of the proof

Let (2, F, (Ft)tejo, 7], P) be a probability space such that there exists a
solution (Y;)¢cpo,7] to



The reduced problem

Strategy of the proof

Let (2, F, (Ft)tejo, 7], P) be a probability space such that there exists a
solution (Y;)¢cpo,7] to

and

Y: is Fi-adapted (W, is a cylindrical F;-Brownian motion).



The reduced problem

Strategy of the proof

Let (2, F, (Ft)tejo, 7], P) be a probability space such that there exists a
solution (Y;)¢cpo,7] to

and
Y: is Fi-adapted (W, is a cylindrical F;-Brownian motion).
Using Girsanov’s Transformation we construct an equivalent measure

Q ~ P (and a cylindrical Brownian motion W) such that Y is an
Ornstein—Uhlenbeck process, i.e.



The reduced problem

Strategy of the proof

Let (2, F, (Ft)tejo, 7], P) be a probability space such that there exists a
solution (Y;)¢cpo,7] to

and
Y: is Fi-adapted (W, is a cylindrical F;-Brownian motion).
Using Girsanov’s Transformation we construct an equivalent measure

Q ~ P (and a cylindrical Brownian motion W) such that Y is an
Ornstein—Uhlenbeck process, i.e.

dY; = —AY, dt + dW,
under Q =~ P.
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The reduced problem

Fix w € Q. Let x be a solution to (IE,). Set u:=x — Y(w). Then

t
u(t) = / e (94F (s, x; ) — e (9AF(s, Yy(w)) ds.
0 =u(s)+Ys(w)
Since Y is an Ornstein—Uhlenbeck process under Q = IP we have reduced

our problem to:

Reduced problem

t
1}

u(t) = /e_(t_s)A (f(s, u(s) + ZSA(w)) — f(s, ZsA(w))) ds=u=0
0

for all w € Qo C Q, Q[Q] = 1.
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u(t) = / e (9 (£(s,u(s) + ZA(w)) — F(s. ZA(w))) ds =5 u=0,
0

We consider the more abstract situation

t
1

u(t) = / e (A (f(s, u(s) + Xe(w)) — (5, Xs(w))) ds = u =0,
0

where X is a given stochastic process.
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with
t

s.t(x,y) = / f(rox+ X, (w)) = f(r,y + X, (w)) dr.

S
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Regularizing Noise

Let (X:, F:) be a stochastic process.
B [0aeCe )l > nlt = sl'lx— ylu| £ < cemor. (o)

with

Definition

Given Q C H. If () holds for every f: [0,1] x H — Q and x,y € Q
then we say X is a Q-regularizing noise with index h and order a.

A. Davie 2007: Brownian motion in R? is regularizing with h = 2 a=2
L. W. 2016: Ornstein—Uhlenbeck process in H is regularizing with h = é
a=2.
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Let Q C HC RN, For every m € N consider Q@ N 2—mzN.

xe Qn2-mzN then x = (%, ...,%,0,...).

Let dn € NU {400} be the smallest number such that x, = 0 for all
n>d,, and all x € QN 2-"ZN.

Definition
For @ C H C RY we define the effective dimension of @ as

ed(Q) := (dm)men

limed(Q) = 400 <= dim Q = +o0

limed(Q) < 400 <= dim Q < 400
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Properties of ¢, «

Recall that
(k+1)2-"
©nk(x,w) = / f(t,x 4+ Xe(w)) — f(t, Xe(w)) dt.
k2—n

If X is a @-regularizing noise and ed(Q)m < In(m + 1)Y/7 we have

1,1 .
lonk(X)[H < Cnatyo=hn <|X|H 4072 )

and

__n6n
[enk(x) = enkln < € (n52727x — ylu +27")

where 6 := (h — 5)a+7+2
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Theorem (Approximation Theorem)

Let h,: [0,1] — H be a sequence of Lipschitz continuous functions
converging pointwise to a Lipschitz function h, then

1 1
[ (e x@) + ha(e)) a6 =5 [ (e xi(0) + he)) e
0 0
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[ 1)+ (e ae =5 [ £ () + h(0))
0 0

If f were continuous this would follow from Lebesgue’'s dominated
convergence Theorem.
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1 1
/f(t, Xe(w) 4 ha(t)) dt =5 / f(t, Xe(w) + h(t)) dt
0

If f were continuous this would follow from Lebesgue’'s dominated
convergence Theorem. We approximate f by a continuous function f.
We are left with proving that

1

/ﬂ{f;éf}(t,xt(w) + h(t))dt<e
0

uniformly in h. We can construct f such that {f # f} is open, so that by
exploiting the lower semi-continuity we have

1 1
/]l{f#f}(t,Xt(w)—i—h(t)) dt < fim / Lop (£ X(w) + hal2) dt
0 0
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We rewrite the limit as a telescoping sum

1 00 1
/n{f#}(t, Xe(w) + () dE+ 3 /n{f#}(t,xt(w) + hna(t)
0 n=my

=Ly (8, Xe(w) + hn(2)) dt,

where m will be chosen later. We split the second integral into the
dyadic intervals [k2~ ("1 (k + 1)2-("+D)[.

1
[ 1 6% + hn(0) a
0

oo 2"-1

+ Z Z Son—l-l,k(]l{f;g}; hn+1(k2*(n+1)))_¢n+1,k(]l{fﬂ}; hn(k2*("+1))).
n=m k=0



Approximation Theorem

Using the estimate for ¢, 1« this is bounded by
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0
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1 sn —(n _(n _nbn
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[ay



Approximation Theorem

Using the estimate for ¢, 1« this is bounded by

1
/n{f#}(t, Xe() + h(t)) dt
0

oo 2"-1

#3003 (mF 2 (k2 D) < (k2 D)y 272"

n=m k=0
Using that hj, is Lipschitz continuous, this is, furthermore, bounded by

on

1 oo
1 5—8np—n —20n
/1{f¢f}(t=xt(w) (1) dt+ > (na2 dnp=n | -2 )
0 n=m

k=0



Approximation Theorem

Using the estimate for ¢, x this is bounded by

1
/11{f¢f}(t,xt(w) 4 h(8))dt

n

iZ(M— g (k27 (D) — (k2 D)y 42727

Using that h, is Lipschitz continuous, this is, furthermore, bounded by

1 oy
/]l{f;éf}(taxt(w) Z kz <n§2—5n2—n + 2_29n) ‘
0 - :

~~

—0 as m—oo
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Approximation Theorem

So that we are left with estimating

1
/ Ly (£ Xe(w) + hin(1)) d.
0

However, we only have to show that the above expression is small for
finitely many hy,. This can be achieved by constructing f in such a way
that {f # f} is sufficiently small.
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Main result

Main result
Let

Q ={x e RY: Z)\nez)‘”|xnl2 < C}
neN
N{x € RY: |x,| < exp(—e"")} v > 2

X = 77,

Then there exists a measurable set Q¢ C Q with P[Qp] = 1 such that

u(t) = / e 9 (1(s,u(s) + ZA(w)) — F(s. ZA(w)) ds = u=0
0

for all w € Q.



Main result

Assumptions on the drift f = (f;)pen

We assume that

o [flloa:=sup Y Ape2M|fy(t, x)]? < oo
te[0,T),xeH neN
o |[falloo = sup  |fa(t,x)| < exp (—e”v), with v > 2
te[0,T],xeH

Main result

Theorem (Main result, LW17)

Under the above assumptions path-by-path uniqueness holds for equation
(SDE).
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Idea of the main proof
Fix an w € Q. Let u be a function solving

t

u(t) = / e (=97 (£(s, u(s) + Xe(w)) — (5, Xe(w))) ds
0
We have to show that u =0. For n € N let k € {0,...,2" — 1}. We have

lu((k+1)27") — u(k2™") |y
(k+1)2-"

~ / e~ (FD2" 9 (£(5 4(s) + X, () — F(s, Xe(w))) ds

k2—n H

~ |90n,k(u)|H
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Idea of the proof of the main result

|u((k +1)277) — u(k27") |1 = |pnk(u)lH
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Let uy be a sequence of functions, which are constant on the dyadic
intervals [k27¢, (k + 1)27[, converge to u. Using that ¢, x is
continuous we have

lu((k+1)27") — u(k2™")|p = lim |@ni(ue)|H-
£—00
We rewrite the above limit as a telescoping sum

o
[nk(tn)l i+ [enk(uer1) = onk(ue)| 1

{=n

Using various estimates we obtain
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Idea of the proof of the main result

lu((k+1)27") — u(k2™")|y < C27"u(k2™") |y In(1/|u(k2™")|H).

From this we use a discrete log-type Grownwall Inequality.

Lemma (Discrete log-type Grownwall inequality)

Let 0 < Bo, ..., Pan < 1 and assume that

|Bk+1 — Bkl < C27"By log(1/B«)
holds for all k € {0,...,2" — 1}. Then, we have

Br < exp (log(ﬂo)e‘zc‘1>
for all k € {0, ...,2" — 1}.

Furthermore, since u(0) = 0 we conclude u = 0.
This solves the reduced problem and completes therefore the proof of the
main result. O
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Strong existence

The reduction via Girsanov transformation only works if our filtered
probability space is equipped with a solution (which is F;-measurable).

Given any filtered probability space (2, F, (Ft)¢cjo,1]; P) there is a
path-by-path unique solution.

On any filtered probability space we can prove that

(X, W), (Y, W) solutions = X=Y.

Hence, by Yamada—Watanabe we obtain a strong solution.

Any filtered probability space is therefore equipped with a solution, hence

we can invoke our main result.
O



Thank you for your attention!
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